Activation of miR-31 function in already-established metastases elicits metastatic regression.
نویسندگان
چکیده
Distant metastases, rather than the primary tumors from which these lesions arise, are responsible for >90% of carcinoma-associated mortality. Many patients already harbor disseminated tumor cells in their bloodstream, bone marrow, and distant organs when they initially present with cancer. Hence, truly effective anti-metastatic therapeutics must impair the proliferation and survival of already-established metastases. Here, we assess the therapeutic potential of acutely expressing the microRNA miR-31 in already-formed breast cancer metastases. Activation of miR-31 in established metastases elicits metastatic regression and prolongs survival. Remarkably, even brief induction of miR-31 in macroscopic pulmonary metastases diminishes metastatic burden. In contrast, acute miR-31 expression fails to affect primary mammary tumor growth. miR-31 triggers metastatic regression in the lungs by eliciting cell cycle arrest and apoptosis; these responses occur specifically in metastases and can be explained by miR-31-mediated suppression of integrin-α5, radixin, and RhoA. Indeed, concomitant re-expression of these three proteins renders already-seeded pulmonary metastases refractory to miR-31-conferred regression. Upon miR-31 activation, Akt-dependent signaling is attenuated and the proapoptotic molecule Bim is induced; these effects occur in a metastasis-specific manner in pulmonary lesions and are abrogated by concurrent re-expression of integrin-α5, radixin, and RhoA. Collectively, these findings raise the possibility that intervention strategies centered on restoring miR-31 function may prove clinically useful for combating metastatic disease.
منابع مشابه
استفاده از miR-31-mimic جهت مهار متاستاز سرطان پستان در رده سلولی MDA-MB231 غنی از سلولهای بنیادی سرطانی
Background: Metastasis associated miRNA (metastamiR) opened a new field of anti-metastatic therapy which have a great potential of treatment for the most lethal aspect of cancer, metastasis. The pleiotropic nature of gene regulation exhibited by certain miRNAs that showed that miRNAs might be endowed with a capacity to function as crucial modulators of tumor metastasis. MiR-31 is a pleiotropic ...
متن کاملSquamous Cell Differentiation in Metastatic Papillary Thyroid Carcinoma: Metaplastic
Squamous cell differentiation (SCD) may occur in papillary thyroid carcinoma (PTC) only at metastatic sites. We have studied cytokeratin CK5/6 and P63 along with TTF1 (thyroid transcription factor 1) and B-Raf (V-Raf murine sarcoma viral oncogene homolog B1) immunohistochemical expression in neck lymph node metastases of thyroid PTC showing SCD. The patient (21-years) presented wit...
متن کاملInhibition of breast cancer metastasis by co-transfection of miR-31/193b-mimics
Objective(s): Various studies have been conducted to reduce the metastatic behavior of cancerous cells. In this regard, ectopic expression of anti-metastatic microRNAs by miR-mimic and miR-restoration-based therapies could bring new insights to the field. In the present study, the consequences of co-transfecting breast cancer cell lines with miR-193b and miR-31 were investigated via invasion an...
متن کاملRewiring of an Epithelial Differentiation Factor, miR-203, to Inhibit Human Squamous Cell Carcinoma Metastasis
Metastatic colonization of distant organs underpins the majority of human-cancer-related deaths, including deaths from head and neck squamous cell carcinoma (HNSCC). We report that miR-203, a miRNA that triggers differentiation in multilayered epithelia, inhibits multiple postextravasation events during HNSCC lung metastasis. Inducible reactivation of miR-203 in already established lung metasta...
متن کاملMetastasis inhibition by BRMS1 and miR-31 replacement therapy in claudin-low cell lines
Objective(s): The growing trend of research demonstrates that dynamic expression of two metastasis repressor classes (metastasis suppressor genes and anti-metastatic miRNA) has a close relationship with tumor invasion and metastasis. Using different strategies, it was revealed that cellular levels of miR-31 and Breast cancer Metastasis Suppressor1 (BRMS1) protein, whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 29 6 شماره
صفحات -
تاریخ انتشار 2011